Iron oxides as carbon and nutrient traps in soils

Elizabeth M. Herndon Department of Geology, Kent State University

Redox gradients influence biogeochemical processes that control carbon storage (decomposition, plant growth)

Polygonal ground on the North Slope of Alaska ~30 m ngee-arctic.ornl.gov; Photo credit Chonggang Xu

Arctic tundra near Utqiagvik, Alaska

Arctic tundra near Utqiagvik, Alaska

Fe redox cycling in the arctic tundra

Objective: explore how Fe cycling influences C & nutrient cycling *Fe redox cycling may help degrade organic molecules, while Fe oxides serve as potential traps for labile C and phosphate*

What is the geochemical distribution of Fe in this landscape?

- Vertical redox gradients drive Fe cycling
- High Fe(II) at depth; Oxidized Fe(III) peaks at the redox interface

Herndon et al. (2015) Biogeochemistry

Organic Horizon

Surface organic soils accumulated Fe

- High concentrations of poorly crystalline iron oxides
- Fe oxides adsorbed labile organic molecules, stabilized soil aggregates, and coated POM

How does Fe redox cycling influence P availability? Investigated Fe/P associations across hydrologic/redox gradients

9

- Depth < 20 cm
- Organic content = 77 ± 20%
- pH = 4.5 ± 1.1
- n = 3 per site

- Depth < 20 cm
- Organic content = 77 ± 20%
- pH = 4.5 ± 1.1
- n = 3 per site

1) What are the dominant forms of Fe in these soils?

 Sequential Fe extractions: Exchangeable → Organic-bound → Poorly Crystalline and Crystalline Fe Oxide fractions

- Depth < 20 cm
- Organic content = 77 ± 20%
- pH = 4.5 ± 1.1
- n = 3 per site

- 1) What are the dominant forms of Fe in these soils?
 - Sequential Fe extractions: Exchangeable → Organic-bound → Poorly Crystalline and Crystalline Fe Oxide fractions

2) What is the potential for these soils to bind PO_4^{3-} ?

Phosphate sorption index (PSI)

- Depth < 20 cm
- Organic content = 77 ± 20%
- pH = 4.5 ± 1.1
- n = 3 per site

- 1) What are the dominant forms of Fe in these soils?
 - Sequential Fe extractions: Exchangeable → Organic-bound → Poorly Crystalline and Crystalline Fe Oxide fractions

2) What is the potential for these soils to bind PO_4^{3-} ?

Phosphate sorption index (PSI)

3) How much P is being sequestered by Fe oxides?

 Sequential P extractions: <u>Water-soluble</u> → Bound to Fe oxides → Organic-P → Apatite fractions

Toolik Lake sites

- Upland, acidic soils were Fe poor and contained organic-bound/crystalline Fe
- Lowland, circumneutral soils were Fe-rich and contained poorly crystalline Fe oxides

Low-lying soils potentially serve as phosphate traps on the landscape

• Soils with high concentrations of poorly crystalline Fe oxides had a high capacity to bind phosphate and low soluble phosphate

Increasing soil pH

How do we measure temporal dynamics?

Acknowledgements

People

- Contact info: Elizabeth Herndon (eherndo1@kent.edu)
- Students (Kent State): Kiersten Duroe, Jonathan Mills, Max Barczok, Chelsea Smith
- Co-I: Lauren Kinsman-Costello (Dept. of Biol. Sci.; Kent State)
- Soil collectors/collaborators: Anne Giblin (Toolik Lake), Stephen Sebestyen (Marcell Exp. Forest), Evan Kane (APEX), Stan Wullschleger (Barrow Env. Observatory)

Funding

- NSF Geobiology and Low-Temperature Geochemistry, EAR-1609027
- Kent State Env. Science and Design Research Initiative seed grant

APS 12-BM; March 2018

Arctic tundra near Utqiagvik, Alaska

Sequential Fe extractions

Sequential P extractions

Fe K-edge X-ray Absorption Spectroscopy

- Soils contained primarily Fe(III)
- Varying proportions of organic-bound or oxide Fe among soils generally confirmed trends seen in sequential extractions

Marcell: Fens contained high concentrations of Fe (oxyhydr)oxides while bogs contained little Fe, primarily as organic-bound/crystalline Fe

Fe(3+) Fe(2+) Disordered Fe(III)-oxyhydroxide

Fe(III)-oxyhydroxide Fe(III)-oxide