Using Genetics to Inform Climate Adaptation Science

Dr. Heidi E. Golden NE CASC Fellow, WHRC & UConn

Dr. Linda Deegan

Genetic Tools for Management

Neutral Markers - Population Structure
 Local Adaptation – CG Experiments
 Signatures of Selection – Genomics
 eDNA and aDNA - Species Detection

Arctic Climate Change Impacts

- Increased thawing of permafrost
- Changes in seasonality
- Changes in patterns of precipitation
- Changes in hydrology Altered aquatic connectivity

Extensive Dry Zone Lower Kuparuk

Increased Drying Shifting Balance PPT vs ET

How might climate change influence population persistence over time?

Neutral Markers

Microsatellites or SNPs

Number of populations
 Gene flow – connectivity
 Effective population size
 Factors influencing structure

Population Structure and Environmental Factors

Watersheds (It, K, S) Distance (km) Estuaries (km) Dry Zones (km)

Neutral Markers Inform Climate Adaptation Microsatellites or SNPs

1.Small Isolated Pops = Higher Extinction Risk Low Genetic Diversity Stochastic Events (b and d rates)
2.Understanding Factors associated w Genetic Variation Allows for Potential Mitigation

Local Adaptation – Trait Selection

Common garden experiments
 Link traits with genetics
 Genomics

Three Populations

Oks Zev: Hot ~ 12 degrees

Kuparuk: Warm ~ 8 degrees

Oks Sag: Cool ~ 5 degrees

Phenotype = $G + E + (G \times E)$

Arctic Grayling Common Garden Experiment

Arctic Grayling Experiment Design

Rearing Chambers

Yolk sack volume Length at hatching Length at swim-up

Metabolism Temperature Preference Rheotaxis – Directionality Preference

Developing Embryo

Trait Measurements

Metabolism

LABQUEST 2

Direction & Temperature Preference

Common Garden Experiments

Common Garden Experiments - Respiration

Traits that Occur at Maturation?

Trait Variation for Migration Distance

PIT-Tags and Antennas

PIT Antenna and Genetic Sampling Locations

DNA from Adults and YOY

YOY ≈ Proxy for Spawning Stocks to Determine Genetic Clusters

> Compare Adult Trait (Migration Distance) with Genetic Assignment to Clusters

Upper reaches: Spawning stocks based on migration distance

Lower reaches: Spawning stocks based on migration timing (temperature)

Climate Implications

Increased River Drying >>

Decreased Genetic Diversity >> Increased Extinction Risk Decreased Population Size Increased Population Isolation

Landscape Genomics Signatures of Selection Across the Genome

i.e. Atlantic Salmon – Age at Maturity Gene (shown) and Chinook Salmon – Migration Gene

(A)

Physical position along the genome (kb)

Ayllon et al. (2015) PLoS Genetics

Landscape Genomics

Numbers indicate amount of samples for each age-class available for genomics from each location.

Genomics

CG Exp. and Genomics Inform Climate Adaptation

 Identifying Genetic Traits Under Selection
 Identify Populations at Risk
 Evaluate Management Options, i.e. Potential for Genetic Rescue

eDNA and aDNA ArcLTER & USFWS

Pre-Migration

Post-

Migration

Begin Return

Migration

Pre-Migration Powerful Tool, but 1. Take multiple samples 2. Control for contamination

Acknowledgements

Questions