

Greening of the tundra biome

Logan Berner¹ Richard Massey¹ Patrick Jantz¹ Bruce Forbes² Marc Macias-Fauria³ Gilles Gauthier⁴ Ben Gaglioti⁵ Laia Andrue-Hayles ⁵ Patrick Burns¹ Rosanne D'Arrigo ⁵ Scott Goetz¹

¹ Northern Arizona University
² University of Lapland
³ University of Oxford
⁴ Laval University
⁵ Columbia University

Arctic tundra: cold but rapidly warming

Plant communities growing taller

Bjorkman et al. 2018 Nature

AVHRR NDVI shows greening of the Arctic

Epstein et al. 2018 State of the Climate

Landsat unleashed

Global vegetation monitoring at 30 m resolution since 1980s

Landsat NDVI trends

Changes in July-August NDVI from 1984 to 2012

Landsat NDVI tracks tundra plant biomass

Data set is publicly available on ORNL DAAC

Berner et al. 2018 ERL

Challenges with Landsat in tundra ecosystems

Landsat NDVI_{max} tracks:

Sedge productivity

Shrub radial growth

Flux tower GPP

Changes in Landsat NDVI_{max} from 1985 - 2016

Pervasive greening of the tundra

Changes in Landsat NDVI_{max} from 2000 - 2016

Pervasive greening of the tundra with scattered browning

Changes in Landsat NDVI_{max} **by zone**

Significant *greening* of biome and each bioclimatic zone from 1985 - 2016

Eruption of Mt. Pinatubo in 1991

Significant *greening* of biome and southern zones from 2000 - 2016

Changes in Landsat NDVI_{max} **by zone**

NDVI stable across half of domain

Greening more prevalent in southern than northern zones

Greening more prevalent than *browning*

Landsat NDVI_{max} - temperature relations

Tundra bioclimatic zone

Landsat NDVI_{max} – temperature relations

Many areas warmed without *greening*

Productivity more closely tied to climate in areas that *greened*

Takeaway messages

Warming caused (most?) tundra plant communities to become taller and more productivity during recent decades, especially in southern bioclimatic zones.

Absolute changes and current status of plant height, productivity, and biomass remain uncertain, warranting future efforts to couple field and remote sensing measurements (esp. Landsat)

> Considerable potential to improve monitoring and modeling of rapidly changing Arctic ecosystems

Thank you!

Logan.Berner@nau.edu

Photo: Jeff Kerby

-

CTIC - BOREAL VULNERABILITY EXPERIMEN

339