

GEOG 339x – Mapping and Landscape Analysis (4 credits)

TENTATIVE SYLLABUS Spring 2015

INSTRUCTOR	Chris Maio 907-474-5651 <u>cvmaio@alaska.edu</u>
OFFICE	Reichardt Building, Room 368
OFFICE HOURS	Monday $3:00-5:00$ Thursday $10:00-12:00$ And by appointment
LECTURES	Murie Building, Room 103 Monday –Wednesday – Friday Class Time: 9:15 -10:15
LABORATORY	Reichardt Building, Room 235 Thursdays 2:00 – 5:00

BOOK

Readings will be provided by the instructor.

COURSE DESCRIPTION

This course will build student knowledge and practical experience regarding the visualization and mapping of landform evolution in response to Earth surface processes, especially in relation to climate change. The first half of the course will introduce students to a variety of research methods used in landscape analysis and mapping. During the second half of the semester examples of landscape formation and evolution specific to Alaska's dynamic environment will be discussed. A semester long research project will allow students to gain experience in the collection and use of a variety of datasets used in landscape analysis. Students will document and present their research through a report and scientific poster.

COURSE GOALS

The course will provide students with an understanding of Earth surface processes, the resulting landforms, and how these landforms evolve through time. Students will gain practical experience using the tools and technologies necessary for landscape analysis including topographic map interpretation, GIS, unmanned aerial vehicles, and ground penetrating radar. Student will carry out a research project and present their results in a public forum.

TEACHING METHODS

This course will combine traditional lectures with hands-on learning activities. Lecture topics will focus on methods used in landscape analysis as well as the fundamental principles of geomorphology. This course is designed to provide students with practical experience learning and applying field and lab methods to visualize and quantify landscape change through time. Two Saturday field trips will serve as a capstone to integrate course concepts and research methods to explore first-hand the dramatic landscapes of interior Alaska.

LEARNING OUTCOMES

- Students will gain a familiarity with different types of landforms particular to Alaska and examine the process of landform evolution through time.
- Students will gain practical experience using topographic maps, unmanned aerial vehicles, ground penetrating radar, and LIDAR.
- Students will gain practice in the scientific method via the development and implementation of a semester long research project.
- Students will learn how to design publishable map figures using Adobe Illustrator.
- Students will improve the quality of their writing, visual, and oral communication skills through the development of a research report and the design and presentation of a scientific poster.
- Students will gain experience reading scientific papers and leading a group discussion about research methods and topics.

COURSE POLICIES

Expectations

Students are expected to come to class and lab prepared and on time. This includes reading the assigned material, having completed all assignments that are due, and prepared to discuss the course material. There is also an expectation that students within the lab and classroom will act with professionalism and be respectful to other students, the instructor, and guests. A failure to meet these expectations will result in a lowering of the final course grade and dismissal from the class in which the expectations were not met.

Attendance and Participation

Attendance and participation within lectures and labs will be worth a total of 10% of the final grade. Attendance for labs and Saturday field trips is mandatory. If there is an emergency or other important obligation which prevents a student from attending lectures they are expected to email the instructor prior to the absence. If students do not email prior to the absence, points will be deducted from the participation grade and other related course work. Students are responsible for ascertaining what materials and/or assignments were missed even if their absence from class was excused.

Media Devices

Cell phones are to be switched off or placed in silent mode. Calls, Texts, and web browsing is not allowed during class periods, unless the instructor (prior to class) has granted permission. Violation of this policy will lead to a loss of grades. Laptops may be used for in-class note taking but use of email, social media or viewing of websites not relevant to the current class is not allowed, and will lead to a loss of grades.

Blackboard

All course materials and important announcements will be posted on Blackboard. This includes the most current version of the syllabus, lectures, handouts, and assigned readings. Students are required to visit Blackboard regularly to stay up to date with course materials and announcements.

STUDENT CONDUCT

UAF students are subject to the Student Code of Conduct. UAF will maintain an academic environment in which freedom to teach, conduct research, and administer the university is protected. Students will benefit from this environment by accepting responsibility for their role in the academic community. The principles of the student code are designed to encourage communication, foster academic integrity and defend freedoms of inquiry, discussion and expression across the university community. For a complete description of the University's Code of Conduct please go to http://www.uaf.edu/catalog/catalog_14-15/pdf/04_Academics.pdf and see Academics and Regulations.

ACADEMIC HONESTY WILL BE STRICTLY ENFORCED WITHIN THIS COURSE. CHEATING AND PLAGIARISM WILL NOT BE TOLERATED. ANY STUDENT CAUGHT PLAGIARIZING OR CHEATING WILL RECEIVE AN AUTOMATIC ZERO ON THE ASSIGNMENT IN QUESTION AND MAY BE REPORTED TO THE UNIVERSITY AUTHORITIES TO FACE FAILURE IN THE COURSE OR EXPULSION.

STUDENT SUPPORT SERVICES

Students with Disabilities

UAF is committed to equal opportunity for students with disabilities. Students with disabilities are encouraged to contact the coordinator of Disability Services (Mary Matthews) at the Center for Health & Counseling (907-474-7043 or uaf-disabilityservices@alaska.edu), to enlist the appropriate support. I will collaborate to provide accommodations and support or services to assist students in meeting the goals of the course.

Veteran Support

It is an honor to have veterans attending UAF and every accommodation will be made to support their success in this course. Please let me know if there is anything that can be done to facilitate your transition or continuation of an academic career and contact Walter Crary below.

Walter Crary is the Veterans Service Officer at the Veterans Resource Center, 111 Eielson Building. 907-474-2475. Email: wecrary@alaska.edu

Fairbanks Vet Center 907-456-4238. VA Community Based Outpatient Clinic at Ft. Wainwright is 907-361-6370.

STUDENT EVALUATION				
Assignment	Points	Total Percent Course		
RESEARCH PROJECT		25%		
Project Proposal and Bibliography	20			
Data Collection and Analysis	50			
Map Figure 1	20			
Map Figure 2	20			
Report Draft 1	40			
Report Final Draft	60			
Lab Presentation	40			
SCIENTIFIC POSTER		10%		
Poster Draft 1	30			
Printed Poster	40			
UAF Research Day Presentation	30			
EXAMS		20%		
Midterm Exam	100	20,0		
Final Exam	100			
LAB EXERCISES		15%		
Lab 1	25			
Lab 2	25			
Lab 3	25			
Lab 4	25			
Lab 5	25			
Lab 6	25			
READING DISCUSSIONS		10%		
Discussion Lead 1	25	10/0		
Discussion Lead 2	25			
Discussion Lead 3	25			
Discussion Participant	25			
FIELD TRIP COMPONENT		10%		
Field Trip 1	40	10/0		
Field Trip 2	60			
ATTENDANCE & PARTICIPATION	7	10%		
Attendance	50	10/0		
Participation	50 50			
r ai ucipation	50			

STUDENT EVALUATION

Grading Scale

Grade	%	Grade	%
A+	97-100	C+	77-79
А	93-96	С	74-76
A-	90-92	C-	70-73
B+	87-89	D+	67-69
В	83-86	D	63-66
B-	80-82	D-	60-62
		F	<60

ADDITIONAL ASSIGNMENT INFORMATION

- 1) **Lab Exercises:** Labs will consist of a series of exercise that will be carried out during the 3 hours period with additional outside work required. Many labs will take-place outside in freezing temperatures. Students should dress for the elements.
- 2) **Research Project:** The research project will focus on using geospatial datasets to visualize and quantify landscape change through time. The topic will be based on student interests, ongoing research, or assigned by the instructor upon request. Projects that document research methods will also be acceptable. The project can be carried out individually or groups of two.
- 3) **Exams:** The exams will include multiple choice, matching, T/F, short answer, and essay questions. The final exam will be primarily drawn from material covered during the second half of the course but will also require students to integrate earlier concepts. A review session will be held prior to each exam.
- 4) **Research Poster:** Students will produce a scientific poster based on their research project. The poster will be presented at the UAF Research Day held on Tuesday, April 28.
- 5) **Field Trip:** Field trips will serve as a capstone experience to integrate course knowledge and research techniques. They will occur Saturdays meeting on campus at 8 am and returning in the evening. Students should bring a snacks, lunch, and warm outdoor clothing. There will be pre-trip readings and post-trip written assignments.
- 6) **Reading Discussions:** A series of articles provided by the instructor will serve as the reading material for this course. One to two students will present the material and guide a group discussion. Students not leading the discussions will demonstrate they have read the materials through their participation.

Due Date	Points	
1/16-5/4	Attendance and Participation (Lab & Lecture)	100
1/16-5/4	Course Readings, Discussion Leader/Participant	100
2/5	Lab 1: Air Photo Analysis	25
2/12	Lab 2: Shoreline Change Analysis	25
2/18	Research Project: Proposal and Bibliography	20
2/19	Lab 3: Digital Elevation Models	25
2/26	Lab 4: GPR	25
	Research Project: Data collection and analysis	60
3/9	Midterm Exam	100
3/11	Research Project: Map Figure 1	20
3/23	Research Project: Report Draft 1	40
3/26	Lab 5: UAV Data Collection	25
3/28	Lab 6: UAV Data Analysis	25
4/2	Field Trip 1 Assignment	40
4/6	Research Project: Map Figure 2	20
4/13	Research Project: Final Report	60
4/17	Research Poster: Draft 1	20
4/23	Research Project: Lab Presentation	40
	Research Poster: Final Draft	30
4/28	UAF Research Day Poster Presentation	40
5/2	Field Trip 2 Assignment	60
5/5 - 5/8	Final Exam	100
	TOTAL POINTS	1000

TENTATIVE LECTURE & LAB EVALUATION SCHEDULE

Week	Date	TENTATIVE LECTURE SCHEDU Lectures	Reading	Assignments Due
1	16 Jan	Lecture 1: Course Introduction	Syllabus	Assignments Due
1	F	Lecture 1. Course Introduction	Review	
2	19 Jan	NO CLASS	10000	
	М	Alaska Civil Rights Day		
	21 Jan	Lecture 2: Syllabus and Research Project	Syllabus	
	W		Review	
	23 Jan	Lecture 3: Introduction to Geomorphology:	Reading 1	
	F	Processes, Landforms, and Time		
3	26 Jan	Lecture 4: Methods used in Landscape		
	М	Analysis		
	28 Jan	Lecture 5: The History and Art of Map	Reading 2	
	W	Making		
	30 Jan	Lecture 6: The Creation and use of		
	F	Topographic Maps		
4	02 Feb	Lecture 7: Modern and Historical Aerial	Reading 4	
	М	Photography in Landscape Analysis		
	04 Feb	Lecture 8: Shoreline Change Analysis using		
	W	the USGS DSAS Tool: Case Study		
	06 Feb	Lecture 9: The use of Light Detection and	Reading 5	
	F	Ranging Data (LIDAR)		
5	09 Feb	Research Project: Development of proposal		
	M	and bibliography		
	11 Feb W	Lecture 10: Digital Elevation Models		
	13 Feb F	Lecture 11: TBA		
6	16 Feb	Lecture 12: Mapping the Subsurface using	Reading 6	
-	М	Marine and Terrestrial Geophysics	6	
	18 Feb	Lecture 13: Ground Penetrating Radar:		Proposal and
	W	Case Study		bibliography
	20 Feb	Lecture 14: Unmanned Aerial Vehicles	Reading 7	
	F	(UAV's)	_	
7	23 Feb	Lecture 15: Thematic Maps and Historical	Reading 8	
	М	GIS		
	25 Feb	Lecture 16: Designing Map Figures using		
	W	Adobe Illustrator and ArcGIS		
	27 Feb	Lecture 17: Methods of Dating Landscape		
	F	Change		
8	02 Mar	Lecture 18: Paleo-Proxy Records Based on	Reading 9	
	М	Sediment Cores: Case Study		
	04 Mar W	EXAM REVIEW		
	06 Mar F	Study Session		
9	09 Mar M	MIDTERM EXAM		

TENTATIVE LECTURE SCHEDULE

Week	Date	Lectures	Reading	Assignments Due
	11 Mar	Post-Exam Review		Research Project: Map
	W	Research Project: Figures and Report		Figure 1
	13 Mar	Lecture 19: Coastal Geomorphology	Reading 10	
	F	Breakfast Provided!		
10	Mar 16-20	SPRING BREAK		
11	23 Mar M	Lecture 20: Dynamic Coastlines of Alaska		Research Project: Report Draft 1
	25 Mar W	Lecture 21: Paraglacial Processes and Landforms	Reading 11	
	27 Mar F	Lecture 22: Alaska's Permafrost Landscapes in a Changing Climate (Guest Lecturer TBA)	Reading 12	
12	30 Mar M	Field Trip Review Research Project: map figures and report		
	01 Apr W	Lecture 23: Glacial Geomorphology		
	03 Apr F	Lecture 24: Pleistocene Glaciation in Interior Alaska	Reading 13	
13	06 Apr M	Lecture 25: TBA		Research Project: Map Figure 2
	08 Apr W	Study Session		
	10 Apr F	Research Project: Design and Presentation of Scientific Posters		
14	13 Apr M	Lecture 26: The Great Alaskan Earthquake of 1964		Research Project: Report Final
	15 Apr W	Lecture 27: Tectonic Processes and Resulting Landforms in Southcentral Alaska	Reading 14	
	17 Apr F	<i>Lecture 28: Human Modification of Natural</i> <i>Landforms</i>		Research Poster: Draft 1
15	20 Apr M	Lecture 29: Global Climate Change: Driver of Environmental Change		
	22 Apr W	Lecture 30: Mapping Erosion along Alaska's Arctic Coastline	Reading 15	Research Presentation Poster: Final Draft
	24 Apr F	NO CLASS – SPRINGFEST		
16	27 Apr M	Lecture 31: TBA		
	28 Apr Tue	URSA Research Fair		URSA Research Presentation
	29 Apr W	NO CLASS		
	01 May F	EXAM REVIEW		
17	04 May M	LAST DAY CLASSES Study Session		
	May 5-08	FINAL EXAM	Location TBA	

LABORATORY AND FIELD TRIP COMPONENT

Attendance for labs and Saturday field trips is MANDATORY. All lab and field trip assignments are due by the beginning of the next lab period, unless otherwise mentioned by your instructors. Any late submissions will incur a penalty of 10% for that assignment per day it's late. If bad weather or other circumstances prevents a field trip the alternate date will be Saturday, May 2.

Lab (L)	Thursdays	Subject	Location	Assignment
Field	(unless			Due
Trip (FT)	noted)			
L1	29-Jan	Lab 1: Air Photo Analysis	Lab	
L2	5-Feb	Lab 2: Shoreline Change Analysis using the USGS DSAS tool	Lab	Lab 1
L3	12-Feb	Lab 3: Digital Elevation Models	Computer Lab	Lab 2
L4	19-Feb	Lab 4: Mapping the subsurface using ground penetrating radar	Outside Meet at Lab	Lab 3
L5	26-Feb	Research Project Data Collection	Outside Meet at Lab	Lab 4
TBA	5-Mar	TBA	TBA	
L6	12-Mar	Lab 5: Unmanned aerial vehicles (UAV) in landscape analysis	Outside Meet at Lab	
No Lab	19-Mar	SPRING BREAK		
L7	26-Mar	Lab 6: UAV data processing and analysis	Lab	Lab 5
FT1	SATURDAY 28-Mar	Field Trip 1 – TBA	Meet at Lab	Lab 6
L8	2-Apr	Research Project Data Collection	Outside Meet at Lab	FT 1
L9	9-Apr	Research Project: Design of map figures and scientific posters	Computer Lab	
Alternate	16-Apr	Lab Make-Up Alternate	TBA	
L10	23-Apr	Research Project presentations Food Provided!	Lab	
FT2	SATURDAY 25-Apr	Field Trip 2: Geomorphology of Interior Alaska	Outside Meet at Lab	
L11	28-Apr TUESDAY	UAF RESEARCH DAY Poster Presentations	Campus Center	
FT-Alt.	SATURDAY 2-May	Field Trip: Bad Weather Alternate	Outside Meet at Lab	FT 2

TENTATIVE LAB and FIELD TRIP SCHEDULE