How Does Glacial Melt Influence Early Development of Kelp Communities in Kachemak Bay?

Sarah B Traiger

Brenda Konar

University of Alaska Fairbanks

Introduction

- Harding Icefield, lost 34 km³ since 1950s
- Kachemak Glacier lost 16 m elevation (Adalgeirosdottir et al 1998)
- Glacial discharge changes
 - **1** nutrients, salinity
 - **†** sedimentation, **↓** light
- Negative effects on seawer and sessile invertebrates
- Future changes
 - Increase spatial extent of discharge
 - Altered timing
 - Increase discharge

Introduction

Kachemak Bay circulation

Field & Walker 2003

 Observed differences between inner and outer bay

(Spurkland & Iken 2011)

- Outer bay has more diverse and higher abundance of kelp
- Only Saccharina latissima in inner bay
- Only one small population of Nereocystis luetkeana in inner bay

Introduction

 Are these differences due to mortality over time or differences in initial recruitment? Recruitment = the appearance of new individuals

Succession = how community structure changes over time

Research Questions:

- How does recruitment and succession vary across Kachemak Bay?
- 2. Are environmental factors correlated to patterns of recruitment and succession?

Methods

Recruitment and Succession

- In March 2013 placed 6 cleared rocks at each site along 10 m depth contour
- April and biweekly May-Sept 2013 & 2014
- Counted all organisms and estimated percent cover on tops of each rock

April and biweekly throughout summer 2013 & 2014

Sedimentation rate

Nutrient Concentration

Results: Rock Community

Community structure differed among sites PERMANOVA, p = 0.0001

Results: Kelp recruitment

Kelp recruits (< 2 cm)

Kelp recruits (< 2 cm)

Results: Environmental Factors

PERMANOVA, p = 0.003

Inorganic Sedimentation rates

Results

Summary 10 km North ▲ BB ◆ MC ▼ BC PB + PG ■ JB

Summary

Start

Conclusions

- Environmental factors don't explain everything
 - Other important factors?

Kelp populations at glacially-influenced sites at risk to disturbance

Next Steps

- Time Series analyses
- Influence of mobile invertebrates and nearby kelp
- Quantify kelp microscopic stages across Kachemak Bay using genetics

Acknowledgments

Robert & Kathleen for Global Bryd Student Competition

& Arctic System Research

MONTH IN COLUMN THE REAL PROPERTY AND ADDRESS OF THE REAL PROPERTY

Kasitsna Bay Lab: Mike Geagel Hans Pedersen Connie Geagle Kris Holderied

Committee Members: Stephen Okkonen Sarah Hardy

Volunteer divers:

Katrin Iken Lander Ver Hoef Alexandra Ravelo Kim Powell Richard Doering Eric Wood

Anne Benolkin Alyssa Lind Elizaveta Ershova Martin Schuster Ira Hardy Shae Bowman

